九大行星按它们距离太阳的远近分为内行星和外行星两群:水星、金星、地球和火星为内行星;木星、土星、天王星、海王星、冥王星为外围行星。若按它们的质量、大小和结构特征,则分为类地行星和类木行星两类。体积小而密度大、自转慢、卫星少的行星与地球相似,称为类地行星,如水星、金星、火星称为类地行星;体积大而密...
1. 太阳系目前公认有八大行星,分别是水星、金星、地球、火星、木星、土星、天王星和海王星。2. 除了我们所在的银河系,科学家估计宇宙中存在大约1250亿个星系,这些星系形态各异,包括椭圆星系、旋涡星系和不规则星系。3. 星系中包含了多种星球类型,例如白矮星、褐矮星、红矮星,以及极为神秘的天体——...
宇宙中有7大星系 1、水星。水星是太阳系八大行星最内侧也是最小的一颗行星,也是离太阳最近的行星。中国称为辰星,有着八大行星中最大的轨道偏心率。2、金星:金星(Venus)是太阳系中八大行星之一,按离太阳由近及远的次序,是第二颗,距离太阳0.725天文单位。它是离地球最近的行星。3、地球:地球...
宇宙中有七大星系:1. 水星:水星是太阳系中最内侧也是最小的一颗行星,距离太阳最近。在中国被称为辰星,具有太阳系中最大的轨道偏心率。2. 金星:金星是太阳系中的第二颗行星,距离太阳0.725天文单位。它是距离地球最近的行星。3. 地球:地球是太阳系中的第三颗行星,直径、质量和密度都是最大的...
太阳系中共有八颗行星:水星 金星 地球 火星 木星 土星 天王星 海王星。 (冥王星目前以被从行星里开除,降为矮行星)。除水星和金星外,其他行星都有卫星绕其运转,地球有一个卫星 月球,土星的卫星最多,已确认的有26颗。行星 小行星 彗星和流星体都围绕中心天体太阳运转,构成太阳系。太阳占太阳系...
宇宙有哪些星系,那些行星,那些恒星
最早发现的小行星大多以古希腊、罗马的神话人物命名,后来的许多小行星常常冠以天文学家或城市的名字。1928年,我国著名天文学家张钰哲在美国叶凯士天文台发现了1125号小行星,他将这颗小行星命名为中华,这是中国人发现的第一颗小行星,时...
宇宙有哪些星系,那些行星,那些恒星
星系分类
星系主要分成三类:椭圆星系、螺旋星系和不规则星系。对星系类型更明确与广泛的描述会在哈柏序列的条目中叙述。因为哈柏序列是根据视觉的型态,他也许会错过某些星系的重要特征,例如恒星形成率(在星爆星系或活跃星系的核心)。 透镜星系是介于椭圆星系和旋涡星系之间的一种星系。 根据哈柏分类法,星系的类型E表示椭圆星系,S是螺旋星系,SB是棒旋星系,S0是透镜星系。
椭圆星系
至于恒星你每天晚上看到的星星几乎都是好像!2011-07-14
星系主要分成三类:椭圆星系、螺旋星系和不规则星系。对星系类型更明确与广泛的描述会在哈柏序列的条目中叙述。因为哈柏序列是根据视觉的型态,他也许会错过某些星系的重要特征,例如恒星形成率(在星爆星系或活跃星系的核心)。 透镜星系是介于椭圆星系和旋涡星系之间的一种星系。 根据哈柏分类法,星系的类型E表示椭圆星系,S是螺旋星系,SB是棒旋星系,S0是透镜星系。
椭圆星系
至于恒星你每天晚上看到的星星几乎都是好像!2011-07-14
银河系
太阳系
行星
沿椭圆轨道环绕太阳运行的、近似球形的天体叫行星。太阳系有九大行星,按距离太阳的次序是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。冥王星离太阳最远,其轨道直径约120亿公里;天文学家认为太阳系的疆界可能比这个范围还要大得多。
九大行星按它们距离太阳的远近分为内行星和外行星两群:水星、金星、地球和火星为内行星;木星、土星、天王星、海王星、冥王星为外围行星。若按它们的质量、大小和结构特征,则分为类地行星和类木行星两类。体积小而密度大、自转慢、卫星少的行星与地球相似,称为类地行星,如水星、金星、火星称为类地行星;体积大而密度小,自转相当快、卫星多的行星称为类木行星,土星、天王星、海王星和冥王星都是类木行星。
行星本身不发射可见光,以其表面反射太阳光而发亮。在星空背景上,行星有明显的相对移动。这种移动都沿着黄道进行。九大行星中,最先被人们知道的是水星、金星、火星、木星和土星。太阳系中的另外三颗行星是在发明天文望远镜后发现的。1781年英国F.W.赫歇耳发现天王星;法国的勒威耶和英国的亚当斯各自推算出海王星的位置,1846年由德国的伽勒所观测到;冥王星则是1930年由美国的汤博发现。
卫星
围绕行星运动的天体叫卫星。月球就是地球的卫星,它像一个忠实的卫士一样,既绕着地球运动,又伴随着地球一起绕太阳运动。除了水星和金星之外,太阳系的其他行星周围都有卫星。到目前为止,连月球在内,太阳系中共发现66颗卫星:地球1颗,火星2颗,木星16颗,土星23颗,天王星15颗,海王星8颗,冥王星1颗。
卫星与行星一样,本身不发射可见光,以其表面反射太阳光而发亮。较大的小行星,如第532号大力神小行星及18号小行星也有卫星。从20世纪50年代起,人类先后发射了一批卫星,称为“人造卫星”。大多为人造地球卫星,也有人造月球卫星和人造行星卫星等等。
彗星
太阳系中比较特殊的成员。环绕太阳运行或行经太阳附近的云雾状天体。绝大部分彗星都沿着很扁的椭圆轨道绕太阳运行。彗星的结构比较复杂,一般说来,中央密集而明亮的固体部分叫彗核,由一些“冰块”(冰冻的水、甲烷、氨等)石头和尘埃组成。核的四周被一种云雾状的物质包围着,叫做彗发。彗核和彗发合成彗头。
1970年,人造卫星在地球大气层外观测两颗明亮的彗星,发现彗头周围还有一层直径达1000万公里的氢云,当彗星逐渐接近太阳时,太阳辐射压力和太阳风把彗星蒸发出来的气体物质推向和太阳相反的方向,形成了彗尾。
彗星绕太阳运动的轨道一般分为三类:抛物线、双曲线和椭圆。在抛物线或双曲线轨道上运行的彗星叫做“非周期彗星”,它们接近太阳一次就一去不复返了。在椭圆轨道上运动的彗星称为“周期彗星”,周期最短的三年多;最长的可以到1000多年。现在发现的彗星有1600多颗。
小行星
小行星是太阳系里的小天体,它们大多分布在火星、木星轨道之间的小行星带中,从1801年意大利天文学家皮亚齐发现第一颗小行星起,小行星的发现至今只有200多年的历史。
按照提丢斯一波得定则,1781年3月,著名天文学家威廉·赫歇耳在英国意外地发现了天王星,它几乎就在定则给出的距离上,从而有力地支持了提丢斯一波得定则,更激发了人们寻找新行星的兴趣。
1801年元旦之夜,人们沉浸在辞旧迎新的欢乐中。意大利西西里岛巴勒莫天文台台长皮亚齐,为编制一本星表而做巡天观测时,发现了一个在火星和木星之间游动的陌生天体,后来计算它的轨道正好与要找的行星吻合,被命名为谷神星。因当时测得的半径只有400多公里(几经重新测定,现在的精确数值略大于1000公里),不能和大行星相比,所以叫做小行星。
翌年3月,德国天文爱好者奥伯斯发现了第二颗小行星——智神星,除了稍小一点儿,它在好些方面与谷神星伯仲难分。接着又连续发现了婚神星和灶神星。19世纪末开始用照相方法寻找小行星之前,已发现322颗小行星。此后小行星的发现逐年增多,特别是近年来由于探测技术及轨道计算方法都有了很大的改进,每年发现的小行星数竟达二三百颗。据统计,到1994年底被正式编号命名的小行星已达5300多颗。天文学家推测,太阳系内小行星大约有50万颗。
按照国际惯例,新发现的小行星先给予临时命名,在发现年代之后加两个拉丁字母,第一个表示发现的时间,以半个月为单位,按字母顺序排列,第二个则表示在这段时间内发现的次序,也按字母顺序排列。新发现的小行星算出轨道后,再经过两个以上不同冲日年代的观测,方能得到正式编号和永久命名。发现者享有对小行星的命名权。设在美国史密松天文台的国际小行星中心,负责收集所有的小行星的观测资料,并进行系统的轨道认证和编号。
最早发现的小行星大多以古希腊、罗马的神话人物命名,后来的许多小行星常常冠以天文学家或城市的名字。1928年,我国著名天文学家张钰哲在美国叶凯士天文台发现了1125号小行星,他将这颗小行星命名为中华,这是中国人发现的第一颗小行星,时至今日,紫金山天文台已累积发现了几百颗新小行星,到1994年底正式编号和命名的有120多颗。
历史上发现小行星最多的是莱因马齐,他共发现了246颗小行星,其次是首先把照相技术引进小行星观测的德国天文学家沃尔夫,他以发现231颗小行星的记录位居第二。
小行星的直径很小,在天文学家所获得的几百颗小行星半径值中,只有几颗较大、较近的小行星是直接测量的,其他都是用光度法、红外波和偏振法测定的。测量表明,直径在50公里以上的小行星大约有560颗,绝大多数小行星的直径都在1公里以下。
至于小行星的质量,除1号谷神星、2号智神星和4号灶神星外,所有的小行星质量都是由它们的直径和假定的密度推算出来的,仅有数量级的概念。一般认为小行星总质量值为1000亿吨,其中谷神星大约占总质量的一半。
小行星的反照率取决于它们的化学组成和表面状况。由于小行星表面各部分的反照率不同,再加上自转,使小行星的亮度产生周期性的变化。根据亮度变化曲线,可测出小行星的自转周期和自转轴的取向,并推测它们的形状。从目前已知自转状况的200多颗小行星看来,自转周期多数在4~16小时,平均为11.47小时。自转轴的取向是随机分布的。直径大于100公里的小行星的形状一般比较规则,接近球形,直径小于100公里的小行星形状则是各种各样的,有的呈长柱形,有的犹如哑铃,还有的甚至像是两块石块粘在一起的。
我国紫金山天文台从50年代末开始对小行星的光电观测,已发表了数十条小行星光度曲线,其中有些是在国际上首次发表的,由于观测质量高,被国外观测者广泛采用。
小行星的公转轨道都是椭圆的,大约有95%的小行星轨道半长径在2.17~3.64天文单位之间,这一空间区域称为小行星的主环带,位于主环带里的小行星称为“主带小行星”。
一小部分小行星离群索居,形成几个特殊的群体。轨道半径大于3.3天文单位的称为远距小行星,其中最著名的是脱罗央群,它们的轨道半径和木星的一样大。从太阳望去,有一些位于木星之前60°,有一些位于木星之后60°,前者叫“希腊群”,后者叫“纯脱罗央群”。
另一个特殊群体是近距小行星,它们的轨道近日点深入到内太阳系,有的甚至跑进地球轨道以内,称为近地小行星。按照轨道近日点的距离和半长径的数值特征,近地小行星又被划分成阿莫尔型、阿波罗型和阿登型。阿莫尔型小行星的轨道特征是近日距都在火星轨道之内——1.02~1.3天文单位,半长径1.39~4.23天文单位,偏心率0.062~0.574,倾角2.2°~52.1°,小行星直径为0.3~38.5公里。现已发现这类小行星有70多颗。阿波罗小行星的轨道特征是近日距小于1.017天文单位,而半长径大于1天文单位,因有一段轨道与地球轨道非常靠近甚至相交,而引起天文学家的特别关注。这类小行星已发现了100多颗。阿登型小行星的轨道半长径都小于1天文单位,近日距也小于1天文单位,远日距略大于1天文单位。这种小行星为数不多,目前仅发现10颗左右。因它们的轨道与地球近似,周期也相差不多,所以比阿波罗型小行星更受到重视。
一些近地小行星在大行星的摄动下,轨道会和地球轨道相交,从而有可能与地球相撞。在过去的几十亿年中,这种事件可能确实发生过。通过空间遥感技术,在地球上已发现了100多个陨石坑,其中91处推测是小行星撞击造成的。据科学家考证,1976年吉林陨石雨的母体就是接近火星轨道的阿波罗型小行星的一个碎块。最近美国科学家提出,导致6500万年前恐龙灭绝的也是一颗陨落的阿波罗型小行星。
虽然小行星撞击地球造成的危害很大,但是这种机率是微乎其微的。研究表明,直径10公里大小的小行星平均1亿年左右才会与地球相撞一次,地球每百万年受到三次较小的小行星的撞击,但其中只有一次发生在陆地上。为了预防这种不测事件,一些国家正在考虑发射专门监测近地小行星的人造地球卫星,及早发现并排除它们。
1978年6月7日,美国天文学家麦克马洪在观测532号大力神小行星掩恒星时,发现它有一颗卫星,命名为1978(532)I,这是天文学家第一次发现小行星有卫星。532号小行星和其卫星的直径分别为243公里和45.6公里,彼此相距977公里。半年后,天文学家又从18号郁神星掩恒星的资料中发现它也有卫星。这对小天体的中心距为460公里,直径分别为135公里和37公里,倘若这是一颗同步卫星,那么在郁神星上看来,这个“月亮”的角直径可达5°24′,视面积几乎是我们月球的120倍。以后,又在重新处理过去的一些小行星掩星资料时发现若干小行星也有卫星,其中包括2号智神星、6号春神星、9号海神星、12号凯神星等,大概有三四十颗。
1980年,美国天文学家利用光斑干涉测量的新技术证明2号智神星确实存在一颗卫星,但是,对于小行星是否有卫星的问题一直悬而未决,一些持反对意见的天文学家认为,人类已经发射了那么多空间探测器,但迄今未发现一颗小行星的卫星,所以小行星有卫星的结论缺乏观测证据。另外,小行星卫星在天体系统中属于什么层次,能否与月球或木卫等相提并论现在也没有定论。
1989年发射的木星探测器“伽利略”在1991年10月飞过第951号小行星加斯帕,圆了天文学家近探小行星的梦想。1993年8月,“伽利略”掠过第243号小行星艾达,进行了多项观测记录。1994年2月,天文学家分析“伽利略”发回的资料,发现艾达附近有一颗比它小得多的卫星,并在英国学术周刊《自然》上发表了艾达与卫星的合影、卫星的放大图像。此后,“伽利略”又发回更新的成像和光谱资料。据此,天文学家估计艾达卫星的直径为1.5公里,发现时距小行星仅100公里,天文学家认为,这是确切发现小行星有卫星的 。
小行星虽然很小,但是它们在以往的天文学研究中却曾起过重要的作用。譬如,1873年,德国天文学家伽勒利用8号花神星冲日,1877年英国天文学家吉尔利用4号灶神星冲日测定日地距离,都得到了精确的结果。1930~1931年,433号爱神星大冲时,国际天文学联合会组织了空前规模的国际联测,得到了三角测量所能达到的最精确的日地距离数值—14958万公里。
另外,利用小行星还可以测定行星的质量。当某颗小行星接近大行星时,大行星对它的摄动作用必然影响其轨道,从它轨道的微小变化中可以算出行星的实际质量。1870年,天文学家利用29号爱姆菲特列塔接近木星时所测得的木星质量为太阳质量的1/1047,今天天文学家仍在采用这个数值。水星、金星、土星、火星等行星的质量均是用小行星测定的,测出的值有相当高的准确度。
为了改进和提高星表的精度,国际天文学联合会组织十几个天文台对谷神星等10颗小行星进行长期的监测和归算,从实际的数据及已知的轨道根数求得黄道和天赤道的准确位置。
小行星还为研究太阳系起源和演化提供重要线索。按照现代太阳系形成理论,太阳系是在46亿年前由一团混沌星云凝聚而成的。而当初星云形成太阳系的具体过程已无法从地球和其他行星上找到痕迹了,只有小行星和彗星还保留着许多太阳系形成初期的状态,因此,它们被天文学家称为太阳系早期的“活化石”。
另外,小行星的研究对于发展人类航天事业,保护地球环境,开发宇宙都有重要的意义。特别是近地小行星,它们既是潜在的矿物资源,又是小行星中最容易实现航天近探的目标,“伽利略号”宇宙飞船已于1991年10月29日掠过951号小行星加斯帕,从距离1600公里处飞近的探测器,可以清楚地看到这颗小行星表面50米的细节特征。飞船上的近红外测绘分光仪所作的初步测量表明,加斯帕的形状很不规则,有可能是由一个大的母体中分裂出来的,是一颗金属型小行星。这是宇宙飞船探测的 小行星。目前,意大利已制定了一个以皮亚齐命名的近地小行星航天探测计划,准备近探433号爱神星。
太阳系新貌
1957年10月4日,第一颗人造地球卫星发射成功,开辟了人类探测太阳系的新时代。1959年前苏联宇宙飞船绕月飞行,开始了现代太阳系天体表面的研究。它拍摄了月球背面照片,第一次把月球的另一面展示在人们面前。1962年12月14日,美国“水手2号”到达金星附近,揭开了行星近距离探测的新篇章。从那时起,行星探测器纷纷升上天空。至今,对金星作近距离空间考察的探测器已达30个,有一个探测器测量了水星的地形;17个探测器飞到火星附近;测量地球和月亮的探测器就更多了。美国还先后发射了“先锋” 10号、 11号和“旅行者” 1号、 2号考察外行星。截至1989年8月25日“旅行者2号”飞近海王星,太阳系的九大行星已有八个被行星探测器考察过了。目前,太阳系的4个内行星表面状况已初步了解,一大批卫星的地形也现端倪。行星探测器向地球传回成千上万张照片和考察数据,为我们描绘出太阳系天体的一些新貌。
本世纪50年代以来,人造卫星和向月飞行的航天器,开辟了观测地球的新途径。同步卫星在离地面36000公里高空,拍摄到清晰的地球照片。最为精彩的是“阿波罗17号”在向月球飞行中所拍摄的地球照片。只见蓝色的地球,上面海洋陆地都轮廓分明,浩浩苍穹,地球出现在天上。
过去,人们认为地球的形状是个圆球或像个桔子。通过人造卫星的观测,发现地球是一个不规则的球体,赤道以南比赤道以北高7.6米,南极高地心距离比北极短15.2米。地球的形状像个梨,梨柄在北极;梨底在南极。在60年代,空间探测器还发现,由于太阳风的影响,地球磁场被压缩成一个彗星状的区域(磁层),在这个区域里,有两条高能带电粒子的辐射带——范艾伦带。
1969年7月21日,美国的“阿波罗11号”宇宙飞船把第一批宇航员送上了月球,实现了人类登月的夙愿。宇航员利用带去的月球车,在月面上进行了多学科的考察,收集到270多千克月岩和土壤的样品。通过分析这些样品,发现月岩的化学成分与地球岩石基本相似,没有发现可生存的月球有机物,也不存在古微生物的证据。在月球上还发现有地震那样的月震,但月震很弱,最大的月震只有1~2级。通过测定月球的放射性元素,得知月球和地球同龄,它们都有46亿岁了。
空间探测结果告诉我们,月球已不是唯一布满环形山的天体了。水星、金星、火星的表面都很像月球,环形山星罗棋布,既有高山,也有平原。火星上的奥林匹斯火山口,是太阳系中最大的火山口,直径为600多公里。探测器发回的信息告诉我们,土卫四和土卫五上的环形山,多得与月球不相上下。
金星探测器为我们描述了金星风光:金星天空(云)是橙黄色的,金星的大部分表面都覆盖着一层“浮土”。金星表面的温度是460℃左右,气压约为地球的90倍。在金星上,既有山脉也有峡谷,一条2000多公里长的大裂缝,自南向北穿过金星赤道,裂缝最深的地方有2900米左右。这是目前在太阳系天体上发现的一条最大的裂缝。
金星上空闪电频繁,每分钟达20多次,有一次竟持续了15分钟。土星的大气中也常常是电光闪闪,雷声隆隆,“旅行者2号”曾记录到数千次威力比地球上强烈数万倍的闪电。
自从1877年意大利天文学家斯基帕雷利提出火星运河以来,火星上的水一直为人们所关注。1973年,美国天文学家休古宁注意到火星赤道以南的“太阳湖”地区异常明亮,他认为是有水存在。后来“海盗号”飞船发现那里上空的水蒸汽也比别的地方丰富。经天文学家们研究,并从该地区的雷达探测发现,在一个直径为300~500公里地带,雷达回波随季节而变化,这也是水的特征。“水手号”还发现火星表面有干涸的河床。科学家们认为,火星表面虽然现在没有水,但在古代却存在过海洋。
在对太阳系行星研究中,进度较大的是火山。1979年3月,“旅行者1号”发现木卫一上至少有8座活火山活动,其中有一座正以每小时1600公里的速度喷发着气体和固体物质,喷发物的高度达480公里。以后又发现木卫二和海卫一有活火山活动。除活火山外,在太阳系固体行星表面上复杂的地形形成过程中,火山起着相当重要的作用。
本世纪上半叶,除了地球磁场外,其他行星是否存在磁场,是行星物理学研究的一个新课题。20多年来,大量空间飞行器携带着磁场计、太阳风粒子谱仪和带电粒子望远镜飞到行星附近进行近距离的直接探测。现在,除冥王星外,其他八大行星都被宇宙飞船考察过了。这些空间飞行器发回地球的数据表明,地球、木星、土星都具有极强的磁场;水星的磁场较地球、木星、土星的弱一些;金星的磁场比地球弱得多;火星存在磁场,但有无固有磁场目前尚无定论。此外,“旅行者2号”在天王星和海王星附近也进行了磁场测量,结果表明这两颗大行星都有磁场存在。行星存在磁场,磁场与行星周围运动物质相互作用,便可以形成一种特殊区域——磁层。磁层中有等粒子体套、尖点、等离子体片、辐射带和等粒子体层等。地球磁层里有内外两个辐射带,分别由质子和电子组成。空间飞行器发回的数据表明,水星、木星、土星都具有磁层;金星和火星的磁层面目尚不很清楚;天王星和海王星也可能有磁层存在。
地球上有极光,其他行星上是否也有极光?过去有人认为木星上也会有极光,但探测了20多年,一直未发现。1979年,“旅行者1号”发现木星背着太阳的一面,有长达三万多公里的极光,在地球以外第一次探测到太阳系天体上的极光。
土星曾以它有光环缭绕而被称为最美丽的行星。土星光环是怎样组成的呢?1980年11月,“旅行者1号”在飞近土星时,对土星光环进行了“面对面”的考察。原来,土星光环平面内有100~1000条大小不等的环,环内还有环,很像唱片上的纹路。有些光环还像发辫那样互相扭结在一起,难解难分。土星光环是由无数颗大小不等的微粒组成的。
现在,土星已不是唯一有光环的行星了。1977年,美国、中国、印度、南非等国的天文学家在观测天王星掩恒星时,意外地发现天王星也有光环。1979年3月,“旅行者1号”考察木星时,发现木星也有一条宽达数千公里、厚约30公里的光环。1989年8月,“旅行者2号”飞到海王星附近探测时,发现海王星也存在光环。经研究,太阳系九大行星中,4个类木行星(木星、土星、天王星和海王星)均有光环结构;4个类地行星(水星、金星、地球和火星)则一颗都没有光环。冥王星离我们太远,它有没有环仍然是一个谜。
1979年以后,宇宙飞船先后访问了土星,相继发现了土星的一些新卫星。现在发现土星共有23颗卫星,是太阳系中最大的一个家族。木星有16颗卫星,是第二大家族。“旅行者”1号和2号在行星际空间的大旅行,使地面基地观测已知的33颗太阳系天然卫星增加到66个,极大地丰富了人类关于太阳系天体的知识宝库。
第一颗小行星是皮亚齐于1801年在西西里岛上发现的,他给这颗星起名为谷神·费迪南星。前一部分是以西西里岛的保护神谷神命名的,后一部分是以那波利国王费迪南四世命名的。但国际学者们对此不满意,因此将第二部分去掉了。因此第一颗小行星的正式名称是小行星1号谷神星。此后发现的小行星都是按这个传统以罗马或希腊的神来命名的,比如智神星、灶神星、义神星、婚神星等等。
但随着越来越多的小行星被发现,最后古典神的名字都用光了。因此后来的小行星以发现者的夫人的名字、历史人物或其他重要人物、城市、童话人物名字或其它神话里的神来命名。比如小行星216是按埃及女王克丽欧佩特拉命名的;小行星719阿尔伯特是按阿尔伯特·爱因斯坦命名的;小行星17744是按女演员茱迪·福斯特命名的;小行星1773是按格林童话中的一个侏儒命名的,等等。截至2007年3月6日,已计算出轨道(即获临时编号)的小行星共679373颗(查询),获永久编号的小行星共150106颗(查询),获命名的小行星共12712颗。
第一颗在中国土地上发现的小行星:
139 九华星(Juewa)(发现者J.C. Watson)
第一颗由中国人发现的小行星:1125/3789 中华(China) (发现者张钰哲,后1125更改为3789)
第一颗以中国人名命名的小行星:1802 张衡(Zhang Heng)(发现者紫金山天文台)
第一颗以中国地名命名的小行星:2045 北京(Peking)(发现者紫金山天文台)
第一颗以中国县名命名的小行星:3611 大埔(Dabu)(发现者紫金山天文台)
第一颗以台湾人名字命名的小行星:2240 蔡(Tsai)(蔡章献)(发现者哈佛天文台)
第一颗以中国太空船名字命名的小行星:8256 神舟(Shenzhou)(发现者紫金山天文台)
为表扬香港中学生陈易希在发明上的成就命名的小行星:20780 陈易希星(Chanyikhei)(发现者LINEAR小组)
为纪念北京奥运会而命名的:2008北京奥运星
恒星按照他们的成长阶段分为原始星胎、刚刚形成的原恒星、年少的主序前星、精力充沛的壮年主序性、还有老年的红巨星、还有衰老将死的白矮星、中子星以及黑洞。其中恒星演化的历程主要由初始质量和化学成分决定的。最终结局也是由其质量决定的,最大的一类成为了黑洞,其次的成为了中子星,再其次的就是白矮星了。恒星的演化详细请看
恒星按照其物理形象还可以分为双星、单星、三星等等。比如离我们最近的比邻星就是人马座a星的第三个星星,他们是个三星系统。而天狼星就是个双星系统
还有一种比较特殊的恒星时变星。变星(variable star)是指亮度有显著起伏变化的恒星,在中国古代称为客星。一些恒星在光学波段的物理条件和光学波段以外的电磁辐射有变化,这种恒星现在也称变星,如光谱变星、磁变星、红外变星、X射线新星等。更加详细的请看
最后还有一种叫做超新星的星星,根据现在的认识,超新星爆发事件就是一颗大质量恒星的“暴死”。对于大质量的恒星,如质量相当于太阳质量的8~20倍的恒星,由于质量的巨大,在它们演化的后期,星核和星壳彻底分离的时候,往往要伴随着一次超级规模的大爆炸。这种爆炸就是超新星爆发。现已证明,1572年和1604年的新星都属于超新星。在银河系和许多河外星系中都已经观测到了超新星,总数达到数百颗。可是在历史上,人们用肉眼直接观测到并记录下来的超新星,却只有6颗。详细请见
希望对你有帮助2011-07-14
太阳系
行星
沿椭圆轨道环绕太阳运行的、近似球形的天体叫行星。太阳系有九大行星,按距离太阳的次序是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。冥王星离太阳最远,其轨道直径约120亿公里;天文学家认为太阳系的疆界可能比这个范围还要大得多。
九大行星按它们距离太阳的远近分为内行星和外行星两群:水星、金星、地球和火星为内行星;木星、土星、天王星、海王星、冥王星为外围行星。若按它们的质量、大小和结构特征,则分为类地行星和类木行星两类。体积小而密度大、自转慢、卫星少的行星与地球相似,称为类地行星,如水星、金星、火星称为类地行星;体积大而密度小,自转相当快、卫星多的行星称为类木行星,土星、天王星、海王星和冥王星都是类木行星。
行星本身不发射可见光,以其表面反射太阳光而发亮。在星空背景上,行星有明显的相对移动。这种移动都沿着黄道进行。九大行星中,最先被人们知道的是水星、金星、火星、木星和土星。太阳系中的另外三颗行星是在发明天文望远镜后发现的。1781年英国F.W.赫歇耳发现天王星;法国的勒威耶和英国的亚当斯各自推算出海王星的位置,1846年由德国的伽勒所观测到;冥王星则是1930年由美国的汤博发现。
卫星
围绕行星运动的天体叫卫星。月球就是地球的卫星,它像一个忠实的卫士一样,既绕着地球运动,又伴随着地球一起绕太阳运动。除了水星和金星之外,太阳系的其他行星周围都有卫星。到目前为止,连月球在内,太阳系中共发现66颗卫星:地球1颗,火星2颗,木星16颗,土星23颗,天王星15颗,海王星8颗,冥王星1颗。
卫星与行星一样,本身不发射可见光,以其表面反射太阳光而发亮。较大的小行星,如第532号大力神小行星及18号小行星也有卫星。从20世纪50年代起,人类先后发射了一批卫星,称为“人造卫星”。大多为人造地球卫星,也有人造月球卫星和人造行星卫星等等。
彗星
太阳系中比较特殊的成员。环绕太阳运行或行经太阳附近的云雾状天体。绝大部分彗星都沿着很扁的椭圆轨道绕太阳运行。彗星的结构比较复杂,一般说来,中央密集而明亮的固体部分叫彗核,由一些“冰块”(冰冻的水、甲烷、氨等)石头和尘埃组成。核的四周被一种云雾状的物质包围着,叫做彗发。彗核和彗发合成彗头。
1970年,人造卫星在地球大气层外观测两颗明亮的彗星,发现彗头周围还有一层直径达1000万公里的氢云,当彗星逐渐接近太阳时,太阳辐射压力和太阳风把彗星蒸发出来的气体物质推向和太阳相反的方向,形成了彗尾。
彗星绕太阳运动的轨道一般分为三类:抛物线、双曲线和椭圆。在抛物线或双曲线轨道上运行的彗星叫做“非周期彗星”,它们接近太阳一次就一去不复返了。在椭圆轨道上运动的彗星称为“周期彗星”,周期最短的三年多;最长的可以到1000多年。现在发现的彗星有1600多颗。
小行星
小行星是太阳系里的小天体,它们大多分布在火星、木星轨道之间的小行星带中,从1801年意大利天文学家皮亚齐发现第一颗小行星起,小行星的发现至今只有200多年的历史。
按照提丢斯一波得定则,1781年3月,著名天文学家威廉·赫歇耳在英国意外地发现了天王星,它几乎就在定则给出的距离上,从而有力地支持了提丢斯一波得定则,更激发了人们寻找新行星的兴趣。
1801年元旦之夜,人们沉浸在辞旧迎新的欢乐中。意大利西西里岛巴勒莫天文台台长皮亚齐,为编制一本星表而做巡天观测时,发现了一个在火星和木星之间游动的陌生天体,后来计算它的轨道正好与要找的行星吻合,被命名为谷神星。因当时测得的半径只有400多公里(几经重新测定,现在的精确数值略大于1000公里),不能和大行星相比,所以叫做小行星。
翌年3月,德国天文爱好者奥伯斯发现了第二颗小行星——智神星,除了稍小一点儿,它在好些方面与谷神星伯仲难分。接着又连续发现了婚神星和灶神星。19世纪末开始用照相方法寻找小行星之前,已发现322颗小行星。此后小行星的发现逐年增多,特别是近年来由于探测技术及轨道计算方法都有了很大的改进,每年发现的小行星数竟达二三百颗。据统计,到1994年底被正式编号命名的小行星已达5300多颗。天文学家推测,太阳系内小行星大约有50万颗。
按照国际惯例,新发现的小行星先给予临时命名,在发现年代之后加两个拉丁字母,第一个表示发现的时间,以半个月为单位,按字母顺序排列,第二个则表示在这段时间内发现的次序,也按字母顺序排列。新发现的小行星算出轨道后,再经过两个以上不同冲日年代的观测,方能得到正式编号和永久命名。发现者享有对小行星的命名权。设在美国史密松天文台的国际小行星中心,负责收集所有的小行星的观测资料,并进行系统的轨道认证和编号。
最早发现的小行星大多以古希腊、罗马的神话人物命名,后来的许多小行星常常冠以天文学家或城市的名字。1928年,我国著名天文学家张钰哲在美国叶凯士天文台发现了1125号小行星,他将这颗小行星命名为中华,这是中国人发现的第一颗小行星,时至今日,紫金山天文台已累积发现了几百颗新小行星,到1994年底正式编号和命名的有120多颗。
历史上发现小行星最多的是莱因马齐,他共发现了246颗小行星,其次是首先把照相技术引进小行星观测的德国天文学家沃尔夫,他以发现231颗小行星的记录位居第二。
小行星的直径很小,在天文学家所获得的几百颗小行星半径值中,只有几颗较大、较近的小行星是直接测量的,其他都是用光度法、红外波和偏振法测定的。测量表明,直径在50公里以上的小行星大约有560颗,绝大多数小行星的直径都在1公里以下。
至于小行星的质量,除1号谷神星、2号智神星和4号灶神星外,所有的小行星质量都是由它们的直径和假定的密度推算出来的,仅有数量级的概念。一般认为小行星总质量值为1000亿吨,其中谷神星大约占总质量的一半。
小行星的反照率取决于它们的化学组成和表面状况。由于小行星表面各部分的反照率不同,再加上自转,使小行星的亮度产生周期性的变化。根据亮度变化曲线,可测出小行星的自转周期和自转轴的取向,并推测它们的形状。从目前已知自转状况的200多颗小行星看来,自转周期多数在4~16小时,平均为11.47小时。自转轴的取向是随机分布的。直径大于100公里的小行星的形状一般比较规则,接近球形,直径小于100公里的小行星形状则是各种各样的,有的呈长柱形,有的犹如哑铃,还有的甚至像是两块石块粘在一起的。
我国紫金山天文台从50年代末开始对小行星的光电观测,已发表了数十条小行星光度曲线,其中有些是在国际上首次发表的,由于观测质量高,被国外观测者广泛采用。
小行星的公转轨道都是椭圆的,大约有95%的小行星轨道半长径在2.17~3.64天文单位之间,这一空间区域称为小行星的主环带,位于主环带里的小行星称为“主带小行星”。
一小部分小行星离群索居,形成几个特殊的群体。轨道半径大于3.3天文单位的称为远距小行星,其中最著名的是脱罗央群,它们的轨道半径和木星的一样大。从太阳望去,有一些位于木星之前60°,有一些位于木星之后60°,前者叫“希腊群”,后者叫“纯脱罗央群”。
另一个特殊群体是近距小行星,它们的轨道近日点深入到内太阳系,有的甚至跑进地球轨道以内,称为近地小行星。按照轨道近日点的距离和半长径的数值特征,近地小行星又被划分成阿莫尔型、阿波罗型和阿登型。阿莫尔型小行星的轨道特征是近日距都在火星轨道之内——1.02~1.3天文单位,半长径1.39~4.23天文单位,偏心率0.062~0.574,倾角2.2°~52.1°,小行星直径为0.3~38.5公里。现已发现这类小行星有70多颗。阿波罗小行星的轨道特征是近日距小于1.017天文单位,而半长径大于1天文单位,因有一段轨道与地球轨道非常靠近甚至相交,而引起天文学家的特别关注。这类小行星已发现了100多颗。阿登型小行星的轨道半长径都小于1天文单位,近日距也小于1天文单位,远日距略大于1天文单位。这种小行星为数不多,目前仅发现10颗左右。因它们的轨道与地球近似,周期也相差不多,所以比阿波罗型小行星更受到重视。
一些近地小行星在大行星的摄动下,轨道会和地球轨道相交,从而有可能与地球相撞。在过去的几十亿年中,这种事件可能确实发生过。通过空间遥感技术,在地球上已发现了100多个陨石坑,其中91处推测是小行星撞击造成的。据科学家考证,1976年吉林陨石雨的母体就是接近火星轨道的阿波罗型小行星的一个碎块。最近美国科学家提出,导致6500万年前恐龙灭绝的也是一颗陨落的阿波罗型小行星。
虽然小行星撞击地球造成的危害很大,但是这种机率是微乎其微的。研究表明,直径10公里大小的小行星平均1亿年左右才会与地球相撞一次,地球每百万年受到三次较小的小行星的撞击,但其中只有一次发生在陆地上。为了预防这种不测事件,一些国家正在考虑发射专门监测近地小行星的人造地球卫星,及早发现并排除它们。
1978年6月7日,美国天文学家麦克马洪在观测532号大力神小行星掩恒星时,发现它有一颗卫星,命名为1978(532)I,这是天文学家第一次发现小行星有卫星。532号小行星和其卫星的直径分别为243公里和45.6公里,彼此相距977公里。半年后,天文学家又从18号郁神星掩恒星的资料中发现它也有卫星。这对小天体的中心距为460公里,直径分别为135公里和37公里,倘若这是一颗同步卫星,那么在郁神星上看来,这个“月亮”的角直径可达5°24′,视面积几乎是我们月球的120倍。以后,又在重新处理过去的一些小行星掩星资料时发现若干小行星也有卫星,其中包括2号智神星、6号春神星、9号海神星、12号凯神星等,大概有三四十颗。
1980年,美国天文学家利用光斑干涉测量的新技术证明2号智神星确实存在一颗卫星,但是,对于小行星是否有卫星的问题一直悬而未决,一些持反对意见的天文学家认为,人类已经发射了那么多空间探测器,但迄今未发现一颗小行星的卫星,所以小行星有卫星的结论缺乏观测证据。另外,小行星卫星在天体系统中属于什么层次,能否与月球或木卫等相提并论现在也没有定论。
1989年发射的木星探测器“伽利略”在1991年10月飞过第951号小行星加斯帕,圆了天文学家近探小行星的梦想。1993年8月,“伽利略”掠过第243号小行星艾达,进行了多项观测记录。1994年2月,天文学家分析“伽利略”发回的资料,发现艾达附近有一颗比它小得多的卫星,并在英国学术周刊《自然》上发表了艾达与卫星的合影、卫星的放大图像。此后,“伽利略”又发回更新的成像和光谱资料。据此,天文学家估计艾达卫星的直径为1.5公里,发现时距小行星仅100公里,天文学家认为,这是确切发现小行星有卫星的 。
小行星虽然很小,但是它们在以往的天文学研究中却曾起过重要的作用。譬如,1873年,德国天文学家伽勒利用8号花神星冲日,1877年英国天文学家吉尔利用4号灶神星冲日测定日地距离,都得到了精确的结果。1930~1931年,433号爱神星大冲时,国际天文学联合会组织了空前规模的国际联测,得到了三角测量所能达到的最精确的日地距离数值—14958万公里。
另外,利用小行星还可以测定行星的质量。当某颗小行星接近大行星时,大行星对它的摄动作用必然影响其轨道,从它轨道的微小变化中可以算出行星的实际质量。1870年,天文学家利用29号爱姆菲特列塔接近木星时所测得的木星质量为太阳质量的1/1047,今天天文学家仍在采用这个数值。水星、金星、土星、火星等行星的质量均是用小行星测定的,测出的值有相当高的准确度。
为了改进和提高星表的精度,国际天文学联合会组织十几个天文台对谷神星等10颗小行星进行长期的监测和归算,从实际的数据及已知的轨道根数求得黄道和天赤道的准确位置。
小行星还为研究太阳系起源和演化提供重要线索。按照现代太阳系形成理论,太阳系是在46亿年前由一团混沌星云凝聚而成的。而当初星云形成太阳系的具体过程已无法从地球和其他行星上找到痕迹了,只有小行星和彗星还保留着许多太阳系形成初期的状态,因此,它们被天文学家称为太阳系早期的“活化石”。
另外,小行星的研究对于发展人类航天事业,保护地球环境,开发宇宙都有重要的意义。特别是近地小行星,它们既是潜在的矿物资源,又是小行星中最容易实现航天近探的目标,“伽利略号”宇宙飞船已于1991年10月29日掠过951号小行星加斯帕,从距离1600公里处飞近的探测器,可以清楚地看到这颗小行星表面50米的细节特征。飞船上的近红外测绘分光仪所作的初步测量表明,加斯帕的形状很不规则,有可能是由一个大的母体中分裂出来的,是一颗金属型小行星。这是宇宙飞船探测的 小行星。目前,意大利已制定了一个以皮亚齐命名的近地小行星航天探测计划,准备近探433号爱神星。
太阳系新貌
1957年10月4日,第一颗人造地球卫星发射成功,开辟了人类探测太阳系的新时代。1959年前苏联宇宙飞船绕月飞行,开始了现代太阳系天体表面的研究。它拍摄了月球背面照片,第一次把月球的另一面展示在人们面前。1962年12月14日,美国“水手2号”到达金星附近,揭开了行星近距离探测的新篇章。从那时起,行星探测器纷纷升上天空。至今,对金星作近距离空间考察的探测器已达30个,有一个探测器测量了水星的地形;17个探测器飞到火星附近;测量地球和月亮的探测器就更多了。美国还先后发射了“先锋” 10号、 11号和“旅行者” 1号、 2号考察外行星。截至1989年8月25日“旅行者2号”飞近海王星,太阳系的九大行星已有八个被行星探测器考察过了。目前,太阳系的4个内行星表面状况已初步了解,一大批卫星的地形也现端倪。行星探测器向地球传回成千上万张照片和考察数据,为我们描绘出太阳系天体的一些新貌。
本世纪50年代以来,人造卫星和向月飞行的航天器,开辟了观测地球的新途径。同步卫星在离地面36000公里高空,拍摄到清晰的地球照片。最为精彩的是“阿波罗17号”在向月球飞行中所拍摄的地球照片。只见蓝色的地球,上面海洋陆地都轮廓分明,浩浩苍穹,地球出现在天上。
过去,人们认为地球的形状是个圆球或像个桔子。通过人造卫星的观测,发现地球是一个不规则的球体,赤道以南比赤道以北高7.6米,南极高地心距离比北极短15.2米。地球的形状像个梨,梨柄在北极;梨底在南极。在60年代,空间探测器还发现,由于太阳风的影响,地球磁场被压缩成一个彗星状的区域(磁层),在这个区域里,有两条高能带电粒子的辐射带——范艾伦带。
1969年7月21日,美国的“阿波罗11号”宇宙飞船把第一批宇航员送上了月球,实现了人类登月的夙愿。宇航员利用带去的月球车,在月面上进行了多学科的考察,收集到270多千克月岩和土壤的样品。通过分析这些样品,发现月岩的化学成分与地球岩石基本相似,没有发现可生存的月球有机物,也不存在古微生物的证据。在月球上还发现有地震那样的月震,但月震很弱,最大的月震只有1~2级。通过测定月球的放射性元素,得知月球和地球同龄,它们都有46亿岁了。
空间探测结果告诉我们,月球已不是唯一布满环形山的天体了。水星、金星、火星的表面都很像月球,环形山星罗棋布,既有高山,也有平原。火星上的奥林匹斯火山口,是太阳系中最大的火山口,直径为600多公里。探测器发回的信息告诉我们,土卫四和土卫五上的环形山,多得与月球不相上下。
金星探测器为我们描述了金星风光:金星天空(云)是橙黄色的,金星的大部分表面都覆盖着一层“浮土”。金星表面的温度是460℃左右,气压约为地球的90倍。在金星上,既有山脉也有峡谷,一条2000多公里长的大裂缝,自南向北穿过金星赤道,裂缝最深的地方有2900米左右。这是目前在太阳系天体上发现的一条最大的裂缝。
金星上空闪电频繁,每分钟达20多次,有一次竟持续了15分钟。土星的大气中也常常是电光闪闪,雷声隆隆,“旅行者2号”曾记录到数千次威力比地球上强烈数万倍的闪电。
自从1877年意大利天文学家斯基帕雷利提出火星运河以来,火星上的水一直为人们所关注。1973年,美国天文学家休古宁注意到火星赤道以南的“太阳湖”地区异常明亮,他认为是有水存在。后来“海盗号”飞船发现那里上空的水蒸汽也比别的地方丰富。经天文学家们研究,并从该地区的雷达探测发现,在一个直径为300~500公里地带,雷达回波随季节而变化,这也是水的特征。“水手号”还发现火星表面有干涸的河床。科学家们认为,火星表面虽然现在没有水,但在古代却存在过海洋。
在对太阳系行星研究中,进度较大的是火山。1979年3月,“旅行者1号”发现木卫一上至少有8座活火山活动,其中有一座正以每小时1600公里的速度喷发着气体和固体物质,喷发物的高度达480公里。以后又发现木卫二和海卫一有活火山活动。除活火山外,在太阳系固体行星表面上复杂的地形形成过程中,火山起着相当重要的作用。
本世纪上半叶,除了地球磁场外,其他行星是否存在磁场,是行星物理学研究的一个新课题。20多年来,大量空间飞行器携带着磁场计、太阳风粒子谱仪和带电粒子望远镜飞到行星附近进行近距离的直接探测。现在,除冥王星外,其他八大行星都被宇宙飞船考察过了。这些空间飞行器发回地球的数据表明,地球、木星、土星都具有极强的磁场;水星的磁场较地球、木星、土星的弱一些;金星的磁场比地球弱得多;火星存在磁场,但有无固有磁场目前尚无定论。此外,“旅行者2号”在天王星和海王星附近也进行了磁场测量,结果表明这两颗大行星都有磁场存在。行星存在磁场,磁场与行星周围运动物质相互作用,便可以形成一种特殊区域——磁层。磁层中有等粒子体套、尖点、等离子体片、辐射带和等粒子体层等。地球磁层里有内外两个辐射带,分别由质子和电子组成。空间飞行器发回的数据表明,水星、木星、土星都具有磁层;金星和火星的磁层面目尚不很清楚;天王星和海王星也可能有磁层存在。
地球上有极光,其他行星上是否也有极光?过去有人认为木星上也会有极光,但探测了20多年,一直未发现。1979年,“旅行者1号”发现木星背着太阳的一面,有长达三万多公里的极光,在地球以外第一次探测到太阳系天体上的极光。
土星曾以它有光环缭绕而被称为最美丽的行星。土星光环是怎样组成的呢?1980年11月,“旅行者1号”在飞近土星时,对土星光环进行了“面对面”的考察。原来,土星光环平面内有100~1000条大小不等的环,环内还有环,很像唱片上的纹路。有些光环还像发辫那样互相扭结在一起,难解难分。土星光环是由无数颗大小不等的微粒组成的。
现在,土星已不是唯一有光环的行星了。1977年,美国、中国、印度、南非等国的天文学家在观测天王星掩恒星时,意外地发现天王星也有光环。1979年3月,“旅行者1号”考察木星时,发现木星也有一条宽达数千公里、厚约30公里的光环。1989年8月,“旅行者2号”飞到海王星附近探测时,发现海王星也存在光环。经研究,太阳系九大行星中,4个类木行星(木星、土星、天王星和海王星)均有光环结构;4个类地行星(水星、金星、地球和火星)则一颗都没有光环。冥王星离我们太远,它有没有环仍然是一个谜。
1979年以后,宇宙飞船先后访问了土星,相继发现了土星的一些新卫星。现在发现土星共有23颗卫星,是太阳系中最大的一个家族。木星有16颗卫星,是第二大家族。“旅行者”1号和2号在行星际空间的大旅行,使地面基地观测已知的33颗太阳系天然卫星增加到66个,极大地丰富了人类关于太阳系天体的知识宝库。
第一颗小行星是皮亚齐于1801年在西西里岛上发现的,他给这颗星起名为谷神·费迪南星。前一部分是以西西里岛的保护神谷神命名的,后一部分是以那波利国王费迪南四世命名的。但国际学者们对此不满意,因此将第二部分去掉了。因此第一颗小行星的正式名称是小行星1号谷神星。此后发现的小行星都是按这个传统以罗马或希腊的神来命名的,比如智神星、灶神星、义神星、婚神星等等。
但随着越来越多的小行星被发现,最后古典神的名字都用光了。因此后来的小行星以发现者的夫人的名字、历史人物或其他重要人物、城市、童话人物名字或其它神话里的神来命名。比如小行星216是按埃及女王克丽欧佩特拉命名的;小行星719阿尔伯特是按阿尔伯特·爱因斯坦命名的;小行星17744是按女演员茱迪·福斯特命名的;小行星1773是按格林童话中的一个侏儒命名的,等等。截至2007年3月6日,已计算出轨道(即获临时编号)的小行星共679373颗(查询),获永久编号的小行星共150106颗(查询),获命名的小行星共12712颗。
第一颗在中国土地上发现的小行星:
139 九华星(Juewa)(发现者J.C. Watson)
第一颗由中国人发现的小行星:1125/3789 中华(China) (发现者张钰哲,后1125更改为3789)
第一颗以中国人名命名的小行星:1802 张衡(Zhang Heng)(发现者紫金山天文台)
第一颗以中国地名命名的小行星:2045 北京(Peking)(发现者紫金山天文台)
第一颗以中国县名命名的小行星:3611 大埔(Dabu)(发现者紫金山天文台)
第一颗以台湾人名字命名的小行星:2240 蔡(Tsai)(蔡章献)(发现者哈佛天文台)
第一颗以中国太空船名字命名的小行星:8256 神舟(Shenzhou)(发现者紫金山天文台)
为表扬香港中学生陈易希在发明上的成就命名的小行星:20780 陈易希星(Chanyikhei)(发现者LINEAR小组)
为纪念北京奥运会而命名的:2008北京奥运星
恒星按照他们的成长阶段分为原始星胎、刚刚形成的原恒星、年少的主序前星、精力充沛的壮年主序性、还有老年的红巨星、还有衰老将死的白矮星、中子星以及黑洞。其中恒星演化的历程主要由初始质量和化学成分决定的。最终结局也是由其质量决定的,最大的一类成为了黑洞,其次的成为了中子星,再其次的就是白矮星了。恒星的演化详细请看
恒星按照其物理形象还可以分为双星、单星、三星等等。比如离我们最近的比邻星就是人马座a星的第三个星星,他们是个三星系统。而天狼星就是个双星系统
还有一种比较特殊的恒星时变星。变星(variable star)是指亮度有显著起伏变化的恒星,在中国古代称为客星。一些恒星在光学波段的物理条件和光学波段以外的电磁辐射有变化,这种恒星现在也称变星,如光谱变星、磁变星、红外变星、X射线新星等。更加详细的请看
最后还有一种叫做超新星的星星,根据现在的认识,超新星爆发事件就是一颗大质量恒星的“暴死”。对于大质量的恒星,如质量相当于太阳质量的8~20倍的恒星,由于质量的巨大,在它们演化的后期,星核和星壳彻底分离的时候,往往要伴随着一次超级规模的大爆炸。这种爆炸就是超新星爆发。现已证明,1572年和1604年的新星都属于超新星。在银河系和许多河外星系中都已经观测到了超新星,总数达到数百颗。可是在历史上,人们用肉眼直接观测到并记录下来的超新星,却只有6颗。详细请见
希望对你有帮助2011-07-14
有太阳,水星,金星,地球,火星,木星,土星,天王星,海王星(按距太阳的近远)第球排在第三位。水星距太阳57,190,000!!!!!!2011-07-25
这我就不知道到了,你要去问懂这个的。2011-07-14
无数2011-07-14
好多2011-07-14
6 个回答易数问答库专题活动